Music Genre Classification using Machine Learning Techniques

نویسنده

  • Hareesh Bahuleyan
چکیده

Categorizing music files according to their genre is a challenging task in the area of music information retrieval (MIR). In this study, we compare the performance of two classes of models. The first is a deep learning approach wherein a CNN model is trained end-to-end, to predict the genre label of an audio signal, solely using its spectrogram. The second approach utilizes hand-crafted features, both from the time domain and frequency domain. We train four traditional machine learning classifiers with these features and compare their performance. The features that contribute the most towards this classification task are identified. The experiments are conducted on the Audio set data set and we report an AUC value of 0.894 for an ensemble classifier which combines the two proposed approaches.1

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شناسایی خودکار سبک موسیقی

Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...

متن کامل

A Study on Music Genre Recognition and Classification Techniques

Automatic classification of music genre is widely studied topic in music information retrieval (MIR) as it is an efficient method to structure and organize the large numbers of music files available on the Internet. Generally, the genre classification process of music has two main steps: feature extraction and classification. The first step obtains audio signal information, while the second one...

متن کامل

Music Genre Classification Using Sparsity-Eager Support Vector Machines

Constructing robust categorical and typological classifiers, i.e., finding auditory constructs utilized for describing music categories, is an important problem in music genre classification. Supervised methods such as support vector machine (SVM) achieve state of the art performance for genre classification but suffer from over-fitting on training examples. In this paper, we introduce a superv...

متن کامل

A Study on Feature Selection and Classification Techniques for Automatic Genre Classification of Traditional Malay Music

Machine learning techniques for automated musical genre classification is currently widely studied. With large collections of digital musical files, one approach to classification is to classify by musical genres such as pop, rock and classical in Western music. Beat, pitch and temporal related features are extracted from audio signals and various machine learning algorithms are applied for cla...

متن کامل

Audio content processing for automatic music genre classification: descriptors, databases, and classifiers

This dissertation presents, discusses, and sheds some light on the problems that appear when computers try to automatically classify musical genres from audio signals. In particular, a method is proposed for the automatic music genre classification by using a computational approach that is inspired in music cognition and musicology in addition to Music Information Retrieval techniques. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018